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like the methylated form of cytosine or 5-methyl-cytosine 
(m5C), they are not accounted to the standard repertoire 
as they appear only in some organisms. The discovery of 
5-methyl-cytosine has already been made more than 90 years 
ago (Johnson and Coghill 1925), several decades before the 
double helix structure of nucleic acids could be deciphered 
by the work of Franklin and Gosling (1953). Due to the 
focus on animal systems, 5-methyl-cytosine has always been 
considered as being an exceptional state or a “minor base” 
within eukaryotic genomes. What is less known today is 
the fact, that these early experiments demonstrated already 
the high abundance of 5-methyl-cytosine within plant tis-
sues, and acknowledged this as a characteristic of flowering 
plants (Wyatt 1950; Vanyushin and Belozersky 1959). This 
reflects the vital role that DNA methylation plays as a gene 
regulatory mechanism for plants. Nowadays, epigenetics has 
become a popular field in biology and seems to undergo its 
second renaissance in plant ecology as an increasing num-
ber of studies focus on the ecological role of epigenetics 
(Schrey et al. 2013; Kilvitis et al. 2014; Herrera and Bazaga 
2016; Alonso et al. 2016a; Richards et al. 2017; Herrera 
et al. 2017). Although the importance of epigenetic gene 
regulation has been widely recognized, its full contribution 
to an adaptive transgenerational response to environmental 
stresses, is not fully understood (Richards 2011; Gutzat and 
Mittelsten Scheid 2012; Viggiano and Pinto 2017). Within 
this manuscript, I would like to emphasize how our under-
standing about epigenetic stress-adaption is biased due to the 
focus on model-plant systems, and give incentives on how to 
choose suitable plant species and ecologically relevant envi-
ronmental stress factors based on the plant´s natural history.

Abstract  In the recent years, there has been considerable 
interest to investigate the adaptive transgenerational plastic-
ity of plants and how a “stress memory” can be transmitted 
to the following generation. Although, increasing evidence 
suggests that transgenerational adaptive responses have 
widespread ecological relevance, the underlying epigenetic 
processes have rarely been elucidated. On the other hand, 
model plant species have been deeply investigated in their 
genome-wide methylation landscape without connecting 
this to the ecological reality of the plant. What we need 
is the combination of an ecological understanding which 
plant species would benefit from transgenerational epige-
netic stress-adaption in their natural habitat, combined with 
a deeper molecular analysis of non-model organisms. Only 
such interdisciplinary linkage in an ecological epigenetic 
study could unravel the full potential that epigenetics could 
play for the transgenerational stress-adaption of plants.

Keywords  Cytosine methylation · Transgenerational 
stress-adaption · Epigenetic priming

General introduction

Asking for the composition of DNA, most people would 
reply by mentioning the four standard bases (A, T, G and C). 
Although modifications of these ordinary bases are known, 
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The role of DNA methylation in plant evolution 
and phenotypic plasticity

Plants are known for their complex and sophisticated gene 
silencing machinery, including cytosine methylation, 
histone modifications and a vast variety of small RNAs 
(Law and Jacobsen 2010; Bej and Basak 2017). These 
processes are involved in tissue specific gene expression, 
embryogenesis, maternal and paternal imprinting and the 
control of transposable elements or viral sequences (Zil-
berman 2008). “Plants are considered as the masters of 
epigenetic regulation”, and the inheritance of epigenetic 
changes can be much easier implemented than for animals 
(Bej and Basak 2017). Somatic cells become part of the 
reproductive organs and plants do not eradicate epigenetic 
marks during the generational change so that epigenetic 
variations can be meiotically stable manifested (Heard and 
Martienssen 2014; Iwasaki and Paszkowski 2014a; Crisp 
et al. 2016).

The power of epigenetic changes is their non-permanent 
nature and their reversibility. Whereas genome recombina-
tion events and genetic mutations drive evolutionary pro-
cesses in the long term, epigenetic modifications allow for 
a faster adaption to a changing environment. The revers-
ible character of chromatin modifications and DNA meth-
ylations allows a rapid, but transitional adaption and, if 
necessary, a revision to the initial status. The evaluation of 
epigenetic variations in natural populations has become a 
topic of increasing interest and helps to elucidate what role 
such a dynamic methylation process plays in driving plant 
evolution (Richards et al. 2010; Herrera et al. 2016; Verho-
even et al. 2016; Niederhuth et al. 2016). Since epimuta-
tions show higher mutation rates than genetic mutations, 
they have a particular high potential for a dynamic evo-
lutionary adaption (van der Graaf et al. 2015; Kronholm 
and Collins 2016). This inspired researchers to focus on 
epigenetic changes as the source of phenotypic plasticity 
for the explanation of adaptive plant phenotypes (Herman 
and Sultan 2011; Herrera and Bazaga 2013; Medrano 
et al. 2014; Colicchio et al. 2015). Especially facultative 
apomictic plants seem to benefit from the possibilities of 
an enhanced stress-adaption by epigenetic mechanisms 
(Rendina González et  al. 2016; Wilschut et  al. 2016; 
González et al. 2017). But what if such mechanisms are 
much more common among plants to adapt the offspring 
to a rapid changing environment? An epigenetic memory 
would allow to establish “transgenerational priming” and 
enables plants with an “adaptive transgenerational plas-
ticity”. This has inspired many to look for possibilities to 
utilize this for adaptive agricultural breeding to produce 
seeds with local adaptions to extreme conditions (Bilichak 
and Kovalchuk 2016; Ramírez-Carrasco et al. 2017).

Transgenerational stress‑adaption: the model 
species dilemma

Plants have a huge potential to utilize transgenerational epi-
genetic stress-adaption, where the environmental conditions 
experienced by the parental generation is inherited by the 
offspring. Plants do not have a sequestered germline com-
pared to animals, but develop their germ cells relative late in 
their life cycle directly from meristematic cells and any epi-
genetic change acquired during vegetative growth could be 
transmitted to the offspring (Kinoshita and Jacobsen 2012).

Besides these good preconditions for epigenetic inherit-
ance, some studies revealed surprisingly little consistency in 
methylation patterns following the stress treatments in plants 
(Eichten and Springer 2015). Other experiments suggest that 
environmental induced epigenetic changes are less important 
contributors to genome-wide heritable variations when look-
ing at the persistence over several generations (Hagmann 
et al. 2015; Keller et al. 2016). But are these observations 
with agricultural crops or genetic model plants in artificial 
environments transferable to other land plants, which have 
evolved in different habitats? We should ask how representa-
tive these model plant systems are, that have been chosen 
for these studies. We need to add “ecological realism” to 
the used model species, to the experimental setup and to the 
entire study design, and do not perform experiments disen-
tangled from the natural lifestyle of a plant (Richards et al. 
2017). On the other hand, we should supplement ecological 
studies and designs with the molecular understanding of the 
epigenetic mechanisms and use the power of genome-wide 
transcriptional and methylation level analysis to gain the 
maximum potential to elucidate transgenerational stress-
adaption in ecological-relevant epigenetic experiments 
(Bossdorf et al. 2008; Richards et al. 2017).

Many of the sophisticated studies on genome-wide DNA 
methylation, epigenome diversity, methylome analysis of 
native populations or even reviews about transgenerational 
epigenetics focus entirely on A. thaliana and its relatives as 
the most frequently used plant model system (Dowen et al. 
2012; Seymour et al. 2014; Hagmann et al. 2015; Kawakatsu 
et al. 2016; Quadrana and Colot 2016). Despite the general 
acceptance as the standard genetic model species, it seems 
not to be the most representative system regarding epige-
netic studies. In fact, considering genome-size and genome-
wide methyl-cytosine content, A. thaliana appears to be an 
outlier (Alonso et al. 2015; Takuno et al. 2016; Niederhuth 
et al. 2016). While most plant species have global methyl-
cytosine levels ranging from 10 to 40%, A. thaliana seems 
to be exceptional and shows only levels around 5% (Alonso 
et al. 2015; Richards et al. 2017; Viggiano and Pinto 2017). 
Even among plants with similar small genome and com-
pared to close relatives (i.e., Capsella rubella or A. lyrata) 
the methyl-cytosine content of A. thaliana is unusual for 
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an angiosperm and only undercut by non-vascular plants 
(Seymour et al. 2014; Takuno et al. 2016).

To be fair, methyl-cytosine content correlates with 
genome-size and has been mainly found at repetitive 
sequences (Alonso et al. 2015). The small genome of A. 
thaliana with its unusual low number of transposable ele-
ments (TEs) explains the low levels of DNA methylation. 
As good as such a small and compact genome with its low 
chromosome number had been in first place to establish this 
plant as a genetic model-system, it has become nowadays 
the major drawback on how findings with A. thaliana can 
be generalized for other angiosperms (Koenig and Weigel 
2015; Richards et al. 2017). Its status as model plant was 
historically justified and has pioneered plant genetics for 
years, which paved the path for other plant systems. With 
its fast lifecycle and the unmatched availability of valuable 
genetic tools (e.g., methyltransferase mutants), it seems to be 
a convenient and popular system to study transgenerational 
effects and epigenetic regulation (Lang-Mladek et al. 2010; 
Slaughter et al. 2012; Luna et al. 2012; Rasmann et al. 2012; 
Wibowo et al. 2016). The trend goes even to an extension 
of these studies and the inclusion of natural ecotypes and 
accessions from various ecosystems (Dubin et al. 2015; Kel-
ler et al. 2016; Kawakatsu et al. 2016). However, as long as 
most of this work is done with A. thaliana, we should be 
critical about what we can infer and transfer to other plant 
systems.

Considering the plant ecology in transgenerational 
priming

An intriguing aspect of plant defense mechanisms where epi-
genetic processes could play a role is priming (Bruce et al. 
2007). This describes a kind of stress-memory that allows to 
respond either faster or stronger to a reoccurring stimulus, 
when the plant has been previously “primed” (Hilker et al. 
2016; Mauch-Mani et al. 2017). Priming is usually consid-
ered to occur within the same generation, but transgenera-
tional effects are imaginable that extend to the following 
generation (Herman and Sultan 2011; Balmer et al. 2015). 
Although there is still limited experimental evidence for 
this, the potential that epigenetic memory could play for 
transgenerational stress-adaption has been discussed in vari-
ous reviews (Gutzat and Mittelsten Scheid 2012; Holeski 
et al. 2012; Sahu et al. 2013; Crisp et al. 2016).

The versatility of epigenetic changes has been made 
responsible for some of the classical priming phenomena, 
as they allow a temporary adaption in a kind of “short-term 
memory” within a plant’s life. If these adaptions are meioti-
cally inherited, they would provide a “long-term memory” of 
stress-adaption or “transgenerational priming”. But would it 
make sense that the progeny predicts the same kind of stress 

that the parents were primed for? Within a single genera-
tion, it could be beneficial to adapt to any fast appearing 
stress using a “short-term memory” so that the plant can 
respond much faster in case of a reoccurring event (e.g., 
herbivore attack, cold spell, drought or flooding within 
floodplain areas). But the ephemeral nature of herbivores 
for example make it difficult to predict their occurrence 
within the following generation, and it might be beneficial 
to “forget” this type of stress in the long term (Crisp et al. 
2016). It seems that plants have even developed mechanisms 
which efficiently prevent the inheritance of certain epige-
netic marks in the absence of stress, which has been at least 
shown for Arabidopsis (Iwasaki and Paszkowski 2014b; 
Wibowo et al. 2016). But this could be different for gradu-
ally increasing processes which happen slowly and do not 
require fast responses (e.g., soil salinization or the build up 
of toxic compounds, e.g., heavy metals). Whereas for the 
latter case a single plant generation would not benefit to 
be “primed”, since these events are rather slow, a transgen-
erational adaption could make more sense here, as such an 
environmental change is rather predictable. Only if a stress 
could be reliably predicted for the offspring, a transgener-
ational stress-adaption in form of a “long-term memory” 
would have an evolutionary benefit. Changes in climate and 
soil properties are likely to affect the following generation 
as well, so that these stresses are good candidates to study 
transgenerational epigenetic stress-adaption. This does not 
necessarily mean that the offspring would be better adapted 
to these conditions physiologically (i.e., showing elevated 
salt tolerance), moreover a transgenerational aspect could 
be a simple avoidance strategy like an increase in seed dor-
mancy, which allows to skip a season and wait for more 
favorable conditions to germinate. Still, this all depends on 
the individual life history of the plant and the dynamics of 
the natural habitat (Bräutigam et al. 2013; Schulz et al. 2014; 
Foust et al. 2016; Rendina González et al. 2016). It would 
make not much sense for the offspring to be preadapted to 
unfavorable soil conditions when the wind rolls the dice 
again where the seeds end up next.

Understanding the epigenetic machinery of plants

Several reports showed convincing examples of transgen-
erational priming and its ecological relevance for plants, 
but the underlying epigenetic mechanisms have been rarely 
investigated (Slaughter et al. 2012; Luna et al. 2012; Ras-
mann et al. 2012; Colicchio 2017). It seems that ecolo-
gists are intrigued by the possibilities of epigenetics, but 
content with the observation of phenotypes, without the 
need for further molecular analysis if (or if not) epigenetic 
changes are involved in these phenomena. There is a lot 
to gain for ecologically motivated studies, if they interlink 
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observed phenotypes with epigenetic changes (Bossdorf 
and Zhang 2011; Richards et al. 2017). Thankfully, the 
recent years have shown that more and more studies were 
able to manage this interdisciplinary balancing act and 
combined ecological observations with epigenetic analysis 
(Foust et al. 2016; Rendina González et al. 2016; Trucchi 
et al. 2016; Alonso et al. 2016b, a; Richards et al. 2017; 
Herrera et al. 2017).

Plants have a very sophisticated silencing apparatus 
and make use of cytosine methylation at multiple sites, 
not only in CG dinucleotides like animals, but also in all 
other possible context at CHG and CHH positions (were 
H could be A, T or C) (Law and Jacobsen 2010). Meth-
ylation at CG or CHG context are considered as being 
symmetric, since they show mirrored methyl-cytosines on 
both complementary strands which can be easily sustained 
during DNA replication. In contrast, positions at the CHH 
sites are called asymmetric, since they are not mirrored on 
the complementary strand and would get lost during DNA 
replication. To be maintained during mitosis, these sites 
require a constant de novo methylation that uses mRNA as 
a guide to establish new methylation marks at respective 
genomic sequences in a process called RNA-directed DNA 
methylation (RdDM) (Dalakouras and Wassenegger 2013). 
This de novo methylation could change the expression of 
any gene, but not like a simple on-or-off switch; epigenetic 
processes work more like a dimmer and change expression 
levels gradually. Although epigenetic reprogramming is 
generally being considered to occur during the reproduc-
tive phase, distinct methylation changes happen during the 
vegetative growth stage. A lot of these informations come 
from the progressive silencing of transformation con-
structs in transgenic plants (Finnegan and McElroy 1994). 
Methylation changes are acquired surprisingly fast during 
vegetative growth, and showed for transgenic Nicotiana 
attenuata plants an increase in promoter methylation of 
up to 3% per day within a 15 day period (Weinhold et al. 
2013). With such a rapid progression, the methylation lev-
els increased finally by 78% (from 13.1 to 90.9%) within 
only 45 days of vegetative growth. As a consequence, the 
entire expression cassette showed a complete shutdown 
in gene expression, which was inherited to the offspring 
without discontinuation and no resetting or enhance-
ment could be observed during generational transition 
(Weinhold et al. 2013). Although this example describes 
the methylation of a 35S promoter and the silencing of 
a heterologous transgene, it demonstrates how fast these 
changes can be acquired during vegetative growth. Experi-
ments with reciprocal crosses could further demonstrate 
that the silenced allele was equally inherited by parental 
lines through both female as well as male gametes, which 
has interestingly also been observed in native populations 
(Herrera et al. 2013).

Suggestions for a simple experiment to investigate 
the epigenetic origin of transgenerational 
stress‑adaption

A common approach in ecologically motivated studies is 
the manipulation of epigenetic marks by the application of 
demethylation agents (Herman and Sultan 2016). Despite 
the ease of application, this procedure has several deleteri-
ous effects on plant development and results in unwanted 
phenotypes.

An ecologically motivated experiment does not require 
mutants or certain cell lines, but only a near isogenic inbred-
generation of plants as basis (Fig. 1). Here, any non-model 
plant system could be used as long as the natural life his-
tory of the plant has been considered for an appropriate trait 
analysis and the selection of a biotic or abiotic stress (Her-
man and Sultan 2016). Plants with short lifecycle or mul-
tiple generations per year are eligible, if their seeds are not 
dispersed, but rather drop on the ground and germinate in 
the same environment as the maternal generation. Compared 
to their genome-size, some plants seemed to have particular 
high levels in genome-wide DNA methylation and it could 
be worthwhile to preferentially select them for epigenetic 
studies. Among these, three millet species (Pennisetum glau-
cum, Setaria italica, Eleusine coracana) as well as sunflow-
ers (Helianthus annuus), potato (Solanum tuberosum) and 
tomato (Lycopersicon esculentum) are worth mentioning 
(Alonso et al. 2015). Here, a further look at their wild rela-
tives could be a good starting point to decide on a epigenetic 
model species.

More importantly, the type of stress needs to be selected 
based on the plant’s natural life history (Bej and Basak 
2017). Does the application of cold, heat or osmotic stress 
reflect the conditions of the plant’s native growth habitat? 
Could it help the offspring to be preadapted to drought 
stress? Would a delay in the germination process be a pos-
sible trait to avoid unfavorable conditions? If seeds are 
dispersed by the wind or by animals, or have very long 
dormancy cycles, such pre-adaptations to temporally or 
spatially restricted conditions might be maladaptive. Is the 
appearance of a certain herbivore predictable (i.e., constant 
animal grazing), or is its lifecycles even tightly bound to 
the lifecycle of the host plant? Does the growth under com-
petition result in phenotypic changes and could be used as 
alternative “stress” factor?

For the actual experiment, the plants would be divided 
into two groups, from which only one is exposed to the 
selected stress. The offspring of both groups would be used 
to screen for any transgenerational inherited trait (Fig. 1). 
Differences in gene expression could be analyzed by RNA-
Seq (Colicchio et al. 2015) and used to select candidate 
genes which can be subsequently analyzed in their promoter 
methylation levels using bisulfite sequencing. Alternatively, 
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methylation-sensitive amplification polymorphism (MSAP), 
bisulfite-converted restriction site associated DNA sequenc-
ing (bsRADseq) or reference-free reduced representation 
bisulfite sequencing (epiGBS) have been successfully 
applied for genome-wide methylation analysis of non-model 
plants (Herrera and Bazaga 2011; Foust et al. 2016; Trucchi 
et al. 2016; Alonso et al. 2016b; van Gurp et al. 2016). This 
way, an ecologically motivated experiment which looks at 
transgenerational stress-adaption of a non-model plant could 
be connect to a subsequent molecular analysis to achieve 
a truly ecological epigenetic study as firmly suggested by 
Bossdorf and Richards (Bossdorf et al. 2008; Richards et al. 
2017).

Conclusions

Regarding ecological epigenetics, the priority in the upcom-
ing years should be the establishment of more realistic and 
plant life history-driven studies in combination with molecu-
lar tools for non-model species. So far, most studies lack the 
connection of the evaluation of epigenetic mechanisms com-
bined with insights into the ecological or evolutionary back-
ground of the type of stress, which a plant perceives within 
the natural environments. We need true ecologically moti-
vated experimental setups using suitable plant candidates 

and realistic environmental stimuli. Only then we could get 
full potential in finding and elucidating the role of epigenetic 
processes in transgenerational phenomena.
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